EDA=

ED-AIC2000 Series

Industrial Smart Camera Based on
Raspberry Pi CM4

SDK Development Guide

EDA Technology Co., LTD

May 2024

Contact Us

Thank you very much for purchasing and using our products, and we will serve

you wholeheartedly.

As one of the global design partners of Raspberry Pi, we are committed to
providing hardware solutions for |IOT, industrial control, automation, green

energy and artificial intelligence based on Raspberry Pi technology platform.

You can contact us in the following ways:
EDA Technology Co.,LTD

Address: Building 29, No.1661 Jialuo Road, Jiading District, Shanghai

Mail: sales@edatec.cn

Phone: +86-18217351262

Website: https://www.edatec.cn

Technical Support:

Mail: support@edatec.cn

Phone: +86-18627838895

Wechat: zzw_1998-

mailto:sales@edatec.cn

Copyright Statement

ED-AIC2000 series and its related intellectual property rights are owned by

EDA Technology Co.,LTD.

EDA Technology Co.,LTD owns the copyright of this document and reserves
all rights. Without the written permission of EDA Technology Co.,LTD, no part

of this document may be modified, distributed or copied in any way or form.

Disclaimer

EDA Technology Co.LTD does not guarantee that the information in this
manual is up to date, correct, complete or of high quality. EDA Technology
Co.,LTD also does not guarantee the further use of this information. If the
material or non-material related losses are caused by using or not using the
information in this manual, or by using incorrect or incomplete information, as
long as it is not proved that it is the intention or negligence of EDA Technology
Co.,LTD, the liability claim for EDA Technology Co.,LTD can be exempted.
EDA Technology Co.,LTD expressly reserves the right to modify or supplement

the contents or part of this manual without special notice.

Foreword

Reader Scope

This manual is applicable to the following readers:

€ Software Engineer

€ System Engineer

Related Agreement

Terminology Convention

Terminology Meaning

CM4 Raspberry Pi Compute Module 4

Symbolic Convention

Symbolic Instruction

@ Prompt symbols, indicating important features or operations.

& Notice symbols, which may cause personal injury, system damage, or signal interruption/loss.
& May cause great harm to people.

Safety Instructions

€ This product should be used in an environment that meets the
requirements of design specifications, otherwise it may cause failure, and
functional abnormality or component damage caused by non-compliance
with relevant regulations are not within the product quality assurance

scope.

€ Our company will not bear any legal responsibility for personal safety

accidents and property losses caused by illegal operation of products.

€ Please do not modify the equipment without permission, which may cause

equipment failure.

€ When installing equipment, it is necessary to fix the equipment to prevent it

from falling.

€ If the equipment is equipped with an antenna, please keep a distance of at

least 20cm from the equipment during use.

€ Do not use liquid cleaning equipment, and keep away from liquids and

flammable materials.

€ This product is only supported for indoor use.

Content

0 =1 1o] o PSR i
T Lo L= S Yoo] o1 TP PT PR i
Related AQreEmMENT ..o i

BT][aTo] (o)Y @70 o V=T o o) o T PSRN i
3] 8] o o] {2 @] 0 1Y7=T 1 1] o P i

Safety INSITUCHONS ... i

S 1B 1 Q@ =Y o1 USSP 1-1
1.1 ST] (G [Yo 18 o 1 o o PSPPI 1-2
1.2 SDK COMPOSITION. ...uuiieeee et e e e e e e e e e et e e e e e e e e e eaaa e ans 1-3

2 FUNCHON DESCIIPLON ... e e e e e et e e e e e e e e e e et e e e e e e e e e e esba e as 2-1
21 (@ @7 o] q o I (O TSR 2-2

2.1.1 T 1T I =T =T o o 2-2
2.1.2 Getting Instance and INItIaliZiNgGueeeieiiieiiiiiiieeeeee e eeeeeeeeeeeeene 2-2
2.1.3 Event Callback FUNCLON ... 2-2
D2 S @7 o1 o |1 To TN [PSPPSRt 2-3
D22 I T @7 o1 o | s To I Lo o | PSPPSRt 2-4
2.1.6 SOUICE File..coiiiiiieeeeeeeee e 2-5
2.2 1O Control (PYthON) ... 2-8
2.2.1 T 1T I =T =T o o 2-8
2.2.2 IMPOIt MOAUIE ... e e e e e e e as 2-8
2.2.3 Getting Instance and INItIaliZiNgueeeieiiiiiiiiiiieieieeeeee e eeeeeeeeeeeeeeenee 2-8
224 Event Callback FUNCLON ... 2-9
D2 I O o1 o] |1 To TN [0 PSPPSRt 2-9
b2 < TR @7 o1 1 o | 11 To N Lo o | 2-10
227 ST 11 o2 1= 2-1
2.3 S T=T T g @7] 1 1o I (O 2-13
2.3.1 [1T I =T =T o o 2-13
2.3.2 L0 o=T = 1] o IR (=7 o 2-13
2.3.3 0T 1U o2 = 2-15
2.4 Sensor Control (PYTON)ee e nnneennennes 2-18
2.4.1 [1T I =T =T o o 2-18
24.2 L0 o=T =1 1] o IR (=1 o 2-18

T = =11] o[YOS UPT TR 3-1

3.1 WItING COUE ..o 3-2

3.2 Compiling and RUNNING COAEuuuuuuiiiiiiiiiiiiiiiieiiieeueeeeeeeeeeeeeeeeeeeeeseeeeeeeeeneeeneessnnsnsnsnnnnes 3-3

1 SDK Overview

1 SDK Overview

This chapter introduces the definition and composition of SDK to help users understand the SDK
better.

v" SDK Introduction

v SDK Composition

ED-AIC2000 Series SDK Development Guide 1-1

1 SDK Overview

1.1 SDK Introduction

The SDK of the ED-AIC2000 series Camera is a set of software development kit, which provides
users with the interfaces required for upper-layer applications to facilitate secondary development of
the camera.

The SDK functions of the ED-AIC2000 series Camera include registering Trigger/Tune button, DI
definition, laser control, status indicator control, alarm indicator control, 2-channel DO control, Light
and light source control, camera working mode setting, camera exposure time setting, camera gain
setting and image data processing.

The location of SDK in the camera system is shown in the figure below.

[Application]

[Buttons] [Laser] [Light Source} [Working Mode] [Gain]
SDK [Indicators] [12-Pin MlZ] [RGB Light } [Exposure Time] [Image Processing]

Camera Sensor
{ —
WiringPi [V4L2] [libcamera]
Drive ¢ ¢ ¢ ¢
[OVZSll] [AR0234] [HQ] [GS

SR TS T

[GPIO] [MCU
Hardware

[Raspberry Pi CM4]

ED-AIC2000 Series SDK Development Guide 1-2

1 SDK Overview

1.2 SDK Composition

The SDK of camera is composed of multiple header files and library files. The details file names and

installation paths are as follows.

Function File Type File Names Installation Paths
10 Control Head File eda-io.h /usr/include/eda/
Library libeda io.so Jusr/lib/
camera.h
. CameraManger.h)
Camera Sensor Control Head File camera_0234.h fusfinclude/edal
camera_2311.h
Library libeda_camera.so lusr/lib/

During the development process, users can complete the development of upper-layer applications

based on actual needs and refer to the corresponding function description below.

ED-AIC2000 Series SDK Development Guide

1-3

2 Function Description

2 Function Description

This chapter introduces how to write the code corresponding to each function to help users write the
code required for upper-layer applications.

v" 10 Control (C++)

v" 10 Control (Python)
v" Sensor Control (C++)
v

Sensor Control (Python)

ED-AIC2000 Series SDK Development Guide 2-1

2 Function Description

2.1 10 Control (C++)

This section introduces the operations of indicator control, laser control, event callback, and output

control.

2.1.1 Flow Diagram

Get Instance

()
Set Up for Initialization

Event Callback Function 10 Control Light Control

[Laser On/OffJ [Set Status Indicatorj [Set Alarm Indicatoa [Set 2 Output Signalsj [Set RGB of Side Lightsj [Light Enable/DisabIe}

[Register Input) [RegisterTrigger Buttonj [Register Tune Buttonj

2.1.2 Getting Instance and Initializing

Before operating 10, you need to obtain an 10 instance and initialize the instance. The steps are as

follows.
1. Getting an 10 instance.

eda::Edalo *em = eda::Edalo::getInstance();
2. Initializing the instance.

em->setup();

2.1.3 Event Callback Function

10 control supports registering callback functions for events, including registering Input, registering
Trigger button, and registering Tune button.

¢ D1 trigger event
em->registerlnput(trigger_input);

The COMMON_IN pin in the 12-Pin M12 interface is connected to ground signal, and the DI1

ED-AIC2000 Series SDK Development Guide 2-2

2 Function Description

pin is connected to 5V signal for triggering.

€ Registering Trigger button
em->registerTrigger(trigger_trigger);

€ Registering Tune button
em->registerTune(trigger_tune);

Sample

#include "eda/eda-io.h"
void trigger_input(int b){

printf("[Test] Tirgger input: %d\n", b);

}

int main(int argc, char *argv[]){
eda::Edalo *em = eda::Edalo::getinstance();
em->registerlnput(trigger_input);
em->setup();

2.1.4 Controlling 10

Using 10 to control the on/off of the laser, the on/off of the status indicator, the on/off of the alarm
indicator and the enable/disable of the 2 outputs.

Preparation
Initialization of the instance has been completed.
Operating Instructions
€ Laser On/Off
em->openLaser();
em->closelaser();
€ Status indicator On/Off

em->setScanStat(true)

ED-AIC2000 Series SDK Development Guide 2-3

2 Function Description

em->setScanStat(false)
€ Alarm indicator On/Off
em->openAlarm()
em->openAlarm()
€ 2 outputs enable/disable
em->setDo1High(false);

em->setDo2High(false);

2.1.5 Controlling light

Both the camera side lights and area lights can be controlled independently.
Preparation
Initialization of the instance has been completed.
Operating Instructions
€ Side light color
em->setRgbLight(1);
0: Closing side light
1: Setting the color to Red

2: Setting the color to Green
3: Setting the color to Blue

€ RGB color of side light

void setRgbLight rgb(uint8 tr, uint8_t g, uint8_t b);

€ Area lights

® Enable (The default state)

em->enableLightSection(1);

ED-AIC2000 Series SDK Development Guide 2-4

2 Function Description

The value range is 1~4, corresponding to different partitions.
® Disable

em->disableLightSection(1);

The value range is 1~4, corresponding to different partitions.

Enabling/disabling the area light does not turn on/off the light. The area light and the camera
are linked. The area light will only turn on when the area light is enabled and the camera is
turned on.

2.1.6 Source File

10 Control Class (C++)
typedef void (*loTrigger)(int level);

class Edalof
public:
static Edalo* getlnstance();
static void close_io();
~Edalo();
[ox
* @brief Laser On
*/
void openLaser();
[
* @brief Laser Off
*/
void closelaser();
[o*
* @brief set status indicator
* @param good
*/
void setScanStat(bool good);
[
* @brief alarm indicator On

*

*/

ED-AIC2000 Series SDK Development Guide 2-5

2 Function Description

void openAlarm();

[

* @brief alarm indicator Off

*/

void closeAlarm();

[ox

* @brief

* @param section 1~4

* @return int

*/

int enableLightSection(int section);
[

* @brief

* @param section 1~4

* @return int

*/

int disableLightSection(int section);
[

* @brief set output1 to [high/low]
* @param high

*/

void setDo1High(bool high);

[

* @brief set output2 to [high/low]
* @param high

*/

void setDo2High(bool high);

/I void setAimerColor(RGBColor color);

[
* @brief register input trigger callback function
* @param callback
*/

void registerlnput(loTrigger callback);

[

* @brief register button callback function

*

ED-AIC2000 Series SDK Development Guide 2-6

2 Function Description

* @param callback

*/

void registerTrigger(loTrigger callback);

[

* @brief register Tune button callback function
* @param callback

*/

void registerTune(loTrigger callback);

[ox
* @brief set RGB light

* @param light 0: Close; 1: Red; 2: Green; 3: Blue,
* @return int

*/

void setRgbLight(uint8_t light);

[

* @brief Set the RGB Light

* @param r red

* @param g green

* @param b blue

*/

void setRgbLight_rgb(uint8_t r, uint8_t g, uint8_t b);

/**

* @pbrief initializing 10 settings
*/

void setup();

ED-AIC2000 Series SDK Development Guide

2-7

2 Function Description

2.2 10 Control (Python)

This section introduces the operations of indicator control, laser control, event callback, and output
control.

2.2.1 Flow Diagram

Get Instance

Set Up for Initialization

Event Callback Function 10 Control Light Control

(Register Input] [Register Trigger Button] (RegisterTune Button] [Laser On/Off] (Set Status Indicator] [Set Alarm Indicatoa (Set 2 Output Signals] [Set RGB of Side Lights] (Light Enable/DisabIe]

2.2.2 Import Module

Before operating 10, you need to import modules.

from libedaio import Edalo,registerinput,registerTrigger,registerTune

2.2.3 Getting Instance and Initializing

After importing the library environment, you need to obtain an 10 instance and initialize the instance.
The steps are as follows.

1. Getting an 10 instance.
edalo = Edalo.singleton();
2. Initializing the instance.

edalo.setup();

ED-AIC2000 Series SDK Development Guide 2-8

2 Function Description

2.2.4 Event Callback Function

IO control supports registering callback functions for events, including registering Input, registering
Trigger button, and registering Tune button.

¢ D1 trigger event
registerInput(func_input)

The COMMON_IN pin in the 12-Pin M12 interface is connected to ground signal, and the DI1
pin is connected to 5V signal for triggering.

€ Reqgistering Trigger button
registerTrigger(func_trigger)
€ Registering Tune button
registerTune(func_tune)
Sample

#!/usr/bin/python3

from libedaio import Edalo,registerinput
def func_input(v):

print("[Debug] Trigger: input!", v)

def main() -> int:

eda = Edalo.singleton();
registerinput(func_input)
eda.setup()

if _name__=="_main__"
main()

2.2.5 Controlling 10

Using 10 to control the on/off of the laser, the on/off of the status indicator, the on/off of the alarm
indicator and the enable/disable of the 2 outputs.

Preparation

Initialization of the instance has been completed.

ED-AIC2000 Series SDK Development Guide 2-9

2 Function Description

Operating Instructions

€ Laser On/Off
edalo.openLaser();
edalo.closelaser();

€ Status indicator On/Off
edalo.setScanStat(true)
edalo.setScanStat(false)

€ Alarm indicator On/Off
edalo.openAlarm()
edalo.openAlarm()

€ 2 outputs enable/disable
edalo.setDo1High(false);

edalo.setDo2High(false);

2.2.6 Controlling light

Both the camera side lights and area lights can be controlled independently.
Preparation
Initialization of the instance has been completed.
Operating Instructions
€ Side light color
edalo.setRgbLight(1);
® 0: Closing side light

® 1: Setting the color to Red
® 2: Setting the color to Green

ED-AIC2000 Series SDK Development Guide 2-10

2 Function Description

® 3: Setting the color to Blue

€ Arealights

® Enable (The default state)
edalo.enableLightSection(1);
The value range is 1~4, corresponding to different partitions.

® Disable
edalo.disableLightSection(1);
The value range is 1~4, corresponding to different partitions.

Enabling/disabling the area light does not turn on/off the light. The area light and the camera

are linked. The area light will only turn on when the area light is enabled and the camera is
turned on.

2.2.7 Source File

10 Control (Python3)
from libedaio import Edalo,registerinput,registerTrigger,registerTune

def func_trigger(v):
print("[Debug] Trigger: trigger button!”, v)

eda = Edalo.singleton(); # Get IO control instance
registerTrigger(func_trigger); # Register Trigger button callback
registerinput(func_trigger); # Register Input callback

registerTune(func_trigger); # Register Tune button callback
eda.setup(); # Initialization

eda.openLaser(); # Laser On

eda.closelaser(); # Laser Off
eda.setScanStat(True); # Set status indicator
eda.openAlarm(); # Alarm indicator on

eda.closeAlarm(); # Alarm indicator off
eda.setDo1High(True); # Set output1
eda.setDo2High(False); # Set output2

ED-AIC2000 Series SDK Development Guide 2-11

2 Function Description

eda.setRgbLight(1); # Set side light, 0: Off; 1: Red; 2: Green, 3: Blue

ED-AIC2000 Series SDK Development Guide 2-12

2 Function Description

2.3 Sensor Control (C++)

This section introduces the operations of opening/closing camera, setting the camera working mode,
setting the camera exposure time and setting the camera gain.

2.3.1 Flow Diagram

|

Open Camera

[Register Image Callback Functionj

Set Working Mode

Set Exposure

[Thread Processing Image Data]

2.3.2 Operating Steps

Before operating the Camera, you need to obtain the 10 instance and initialize it (for specific
operations, see 2.1.2 Getting Instance and Initializing), and then start the following operations.

1. Getting an instance

eda::Camera *t_camera = eda::load_default();
2. Checking sensor type

t camera->name()

€ eda:CameraName::AR0234

€ eda:CameraName::0OV2311

ARO0234 is the 2.3-megapixel camera.

0OV2311 is the 2-megapixel camera.

3. Open the camera and set working mode, camera area width and camera area height.

ED-AIC2000 Series SDK Development Guide 2-13

2 Function Description

t camera->open(mod, width, height);
€ mod is the working mode, the value includes 0, 1 and 5.
® 0 means continuous mode (the camera keeps opening), both AR0234 and OV2311
support this mode.
® 1 means hardware trigger mode, connecting 5V signal to trigger through trigger pin.
Both AR0234 and OV2311 support this mode.
® 5 means software trigger mode, triggering through manual adjustment. Only OV2311

supports this mode.
int call_trigger();

€ width is area width of camera.

€ height is area height of camera.

4. Setting gain

t camera->set_gain(gain);

€ 0OV2311: The value range of gain is 0~30.

€ ARO0234: The value range of gain is 0~64.

5. Setting exposure time

t camera->set_exposure(exposure);

€ OV2311: The value range of exposure is 0~65523, which unit is microsecond.

€ ARO0234: The value range of exposure is 1~1500, which unit of 6.8 times the value is
microsecond.

6. Obtaining camera data through callback.

t camera->callback _image_ready(image_callback);

In the callback function, it is recommended to only obtain data and not process logic.

7. Close camera

eda::Edalo::close_io();

ED-AIC2000 Series SDK Development Guide 2-14

2 Function Description

2.3.3 Source File

Sensor Control

typedef int(*img_Callback)(char *img_buff, int img_len);

enum CameraName{
AR0234, OV2311
2
class Camera
{
public:
[o*
* @brief initializing camera
* @param mode 0 - continuous mode; 1 - hardware trigger mode; 5 - software trigger
mode
* @param width
* @param height
* @return int
*/
int open(int mode, int width, int height) = 0;
[
* @brief close camera
* @return int
*/
int close() = 0;

/**

* @brief set exposure time

* @param exp_value

* @return int

*/

int set_exposure(int exp_value) = 0;
/**

* @brief obtain exposure time
* @param exp_value

* @return int

*/

ED-AIC2000 Series SDK Development Guide 2-15

2 Function Description

int get_exposure(int *exp_value) = 0;

[ex
* @brief set gain

* @param gain_value

* @return int

*/

int set_gain(int gain_value) = 0;
[o*

* @brief obtain gain

* @param gain_value

* @return int

*/

int get_gain(int *gain_value) = 0;

/**
* @brief register callback function, obtain image data

*

* @param callback

* @return int

*/

int callback_image_ready(img_Callback callback)=0;

CameraName name() = 0;

ED-AIC2000 Series SDK Development Guide 2-16

2 Function Description

Getting AR0234 instance

#include "CameraManger.h"

#include "camera_0234.h"

void test()
eda::Camera *t_camera = eda::create_ar0234();
if(t_camera){
eda::Camera_0234 *t camera_1 = static_cast<eda::Camera_0234*>(t_camera);

ED-AIC2000 Series SDK Development Guide 2-17

2 Function Description

2.4 Sensor Control (Python)

This section introduces the operations of opening/closing camera, setting the camera working mode,
setting the camera exposure time and setting the camera gain.

2.4.1 Flow Diagram

|

Open Camera

Set Exposure

[Register Image Callback Functionj

Set Working Mode

[Thread Processing Image Data]

2.4.2 Operating Steps

Before operating the Camera, you need to import the IO module first, obtain the 10 instance and
initialize it (for specific operations, see 2.2.2 Import Module and 2.2.3 Getting Instance and
Initializing), and then start the following operations.
1. Import module

from libedacamera import EdaCamera
2. Getting an instance

eda = EdaCamera.load_default();
3. Checking sensor type

eda.get_name();

€ return “AR0234”

¢ return “OV2311”

ARO0234 is the 2.3-megapixel camera.

ED-AIC2000 Series SDK Development Guide 2-18

2 Function Description

0OV2311 is the 2-megapixel camera.
4. Open the camera and set working mode, camera area width and camera area height.
ret = eda.open(t_mode,t width, t_height);
€ mod is the working mode, the value includes 0, 1 and 5.
® 0 means continuous mode (the camera keeps opening), both AR0234 and OV2311
support this mode.
® 1 means hardware trigger mode, connecting 5V signal to trigger through trigger pin.
Both AR0234 and OV2311 support this mode.
® 5 means software trigger mode, triggering through manual adjustment. Only OV2311

supports this mode.
eda.call_trigger();

€ width is area width of camera.

€ height is area height of camera.

5. Setting gain

eda.set_gain(int(t_gain));

€ 0OV2311: The value range of gain is 0~30.

€ ARO0234: The value range of gain is 0~64.

6. Setting exposure time

eda.set_exposure(int(t_exposure));

€ 0OV2311: The value range of exposure is 0~65523, which unit is microsecond.

€ ARO0234: The value range of exposure is 1~1500, which unit of 6.8 times the value is
microsecond.

7. Obtaining camera data through callback.

eda.callback_image_ready(func_image_data);

In the callback function, it is recommended to only obtain data and not process logic.

8. Close camera

ED-AIC2000 Series SDK Development Guide 2-19

2 Function Description

eda.close();

ED-AIC2000 Series SDK Development Guide 2-20

3 Example

This chapter introduces detailed code examples, including writing code, compiling code, and running
code.

v' Writing Code

¥v' Compiling and Running Code

ED-AIC2000 Series SDK Development Guide 3-1

3 Example

3.1 Writing Code

The following takes the function of "turn on the laser, wait for 2 seconds and then turn off the laser"
as an example, using C++ language to write the code.

The detailed code is as follows

#include "eda/eda-io.h"

#include <unistd.h>
#include "stdlib.h"

int main(int argc, char *argv[]¥{
eda::Edalo *em = eda::Edalo::getinstance();
em->setup();
//open Laser
em->openLaser();
sleep(2);
// close Laser
em->closeLaser();
eda::Edalo::close_io();
return O;

After writing is completed, save it as test123.cpp file.

@Tip:

The file name can be customized.

ED-AIC2000 Series SDK Development Guide 3-2

3 Example

3.2 Compiling and Running Code

After the C++ code is written, you need to log in to the camera device, compiling and running it on
the Raspberry Pi OS.

Preparation:

€ The connection of camera cables has been completed. For detailed operations, please

Steps:

refer to the "ED-AIC2020 User Manual".
The camera has been powered and connected to the network through the router.

Obtained the camera IP address and successfully logged in to the camera system.

Create a folder on the camera OS and upload the code files written in Chapter 3.1Writing
Code to the folder.

Execute the following command to view the files in the folder and ensure that the code file
has been uploaded successfully.

Is

Execute the following command to compile the written code.

g++ -leda_io -o test-io test123.cpp

“test123.cpp” means the code file written in Chapter 3.1Writing Code.

“test-io” means the file name generated after compilation, the file name can be customized.

Execute the following command to view the new file generated after compilation, as shown

below “test-io”.

Is

pi@raspberrypt:~/tmp $ ls

testl123.cpp test-1o
Execute the following command to run the compiled code.

sudo ./test-io

ED-AIC2000 Series SDK Development Guide 3-3

3 Example

“test-io” means the file name generated after compilation.

@Tip:

After successful operation, you can see that the laser lights up and goes out after waiting
for 2 seconds.

ED-AIC2000 Series SDK Development Guide 34

	Contact Us
	Copyright Statement
	Disclaimer
	Foreword
	Reader Scope
	Related Agreement
	Terminology Convention
	Symbolic Convention

	Safety Instructions
	1 SDK Overview
	1.1 SDK Introduction
	1.2 SDK Composition

	2 Function Description
	2.1 IO Control (C++)
	2.1.1 Flow Diagram
	2.1.2 Getting Instance and Initializing
	2.1.3 Event Callback Function
	2.1.4 Controlling IO
	2.1.5 Controlling light
	2.1.6 Source File

	2.2 IO Control (Python)
	2.2.1 Flow Diagram
	2.2.2 Import Module
	2.2.3 Getting Instance and Initializing
	2.2.4 Event Callback Function
	2.2.5 Controlling IO
	2.2.6 Controlling light
	2.2.7 Source File

	2.3 Sensor Control (C++)
	2.3.1 Flow Diagram
	2.3.2 Operating Steps
	2.3.3 Source File

	2.4 Sensor Control (Python)
	2.4.1 Flow Diagram
	2.4.2 Operating Steps

	3 Example
	3.1 Writing Code
	3.2 Compiling and Running Code

